Bibliography

Carroll, Bradley W., & Ostlie, Dale A. (1996) <u>Modern Stellar Astrophysics</u>. New York: Addison-Wesley Publishing Company, Inc.

Franco, Sergio (1995). <u>Electric Circuits Fundamentals</u>. New York: Saunders College Publishing.

<u>Guidelines for the Preparation and Submission of Theses and Written</u> <u>Creative Works</u>. (1993). San Francisco State University Graduate Division Office. San Francisco, Ca.

Hardy, John W. (1998). <u>Adaptive Optics for Astronomical Telescopes</u>. New York: Oxford University Press.

Houp, Kenneth W., Pearsall, Thomas E., & Tebeaux, Elizabeth. (1998). <u>Reporting Technical Information</u> (9th ed.). Needham Heights, Ma: Allyn & Bacon. Melles Griot 1997-98: Optics, Fiber Optics, Tables & Hardware, Lasers, Instruments & Lab Accessories. (1997). Irvine, Ca: Melles Griot.

Mohan, Ned, Undeland, Tore M., & Robbins, William P. (1989). <u>Power</u> <u>Electronics</u> (2nd ed.). New York: John Wiley & Sons, Inc.

Montgomery, Douglas C., & Runger, George C. (1999). <u>Applied Statistics</u> and Probability for Engineers (2nd ed.). New York: John Wiley & Sons, Inc.

Nanomotion II. 11 NCS 101/IEEE User Manual. (1998). Irvine, Ca: Melles Griot.

<u>New Focus, Inc. 1997/98 Catalog, Vol. 8</u>. (1997). Santa Clara, Ca: New Focus, Inc.

Nise, Norman S. (1995). <u>Control Systems Engineering</u> (2nd ed.). Redwood City, Ca: The Benjamin/Cummings Publishing Company, Inc.

PCI-20093W-1 Analog Output Board and PCI-20369S Master Link

<u>Software Libraries Manual</u>. (1993). Arizona: Intelligent Instrumentation, Inc.

<u>PCI-20428W-1A, -2A, -3A Multifunction Boards and Master Link Software</u> <u>Libraries Manual</u>. (1997). Arizona: Intelligent Instrumentation, Inc.

Physik Insrumente: Nano Positioning, 1998 Waldbronn, Germany: Physik Instrumente.

Rohlf, James W. (1994). <u>Modern Physics from α to Z⁰. New York : John Wiley & Sons, Inc.</u>

Sen, P.C. (1997). <u>Principles of Electric Machines and Power Electronics</u> (2nd ed.). New York : John Wiley & Sons, Inc.

Tipler, Paul A. (1995). <u>Physics For Scientists and Engineers</u> (3rd ed.). New York: Worth Publishers.

<u>Visual Designer 4.0 User Manual</u>. (1998). Arizona: Intelligent Instrumentation, Inc. Wangness, Roald K. (1986). <u>Electromagnetic Fields</u> (2nd ed.). New York: John Wiley & Sons, Inc.

APPENDICES

A1: Specifications

Optical Table

Average Mirror Reflectance	>98% for λ>400nm
Average Total Light Transmission	>96% for λ>400nm
Tip/Tilt Range/Axis	3 degrees
Tip/Tilt Resolution/Axis	0.25 nanoradians
Maximum Angular Velocity of Tip/Tilt Mirror	62.5 mrad/s
Maximum bandwidth for arcsecond	70Hz
corrections	

Beamsplitter

First Surface Reflectance	Avg 4% in Visible
	Wavelengths
Second Surface Reflectance	Avg 0.5% in Visible
	Wavelengths
Total Light Transmission	~94%
Incedence Angle	45 degrees
Angular Range of Mount	10 degrees/axis
Angular Resolution of Mount	6 arcseconds/axis

РМТ

Peak Quantum Effeciency	20% (400nm)
Peak Spectral Response	60mA/W (350-450nm)

Supply Voltage	800VDC
Dark Current	0.065nA/anode
Gain	1.8 x 10 ⁷

PMT Supply Amplifier

Input Voltage	9.9VDC
Output Voltage	800VDC
Voltage Ripple	0.025%

PMT Preamplifiers

Input Impedance	1kΩ
Input Signal Range	1pA-1uA per 1V output
Input Range Selector	Remote via 3 logic lines
Output Range	±10V
Output Impedance	100Ω
Power Requirements	±15V, 50mA

Data Acquisition Board

Bus Compatability	PC/XT/AT and EISA	
Analog Input		
No. of Channels	16 Single ended 8 differential	
Resolution	12 bits	
Voltage ranges (jumper selectable)	±5V, ±10V, 0-5V, 0-10V	
Selected Range	0-10V	

Gain Ranges (jumper Selectable)	1, 10, 100	
Selected Gain	1	
Offset Voltage	±2.44mV max	
Bias Current	500pA	
Input Impedance	10 ⁹ Ω/10pF	
Noise (Gain=1)	0.5 LSB RMS max	
Analog Output		
No. of Channels	2	
Resolution	12 bits	
Voltage Ranges (jumper selectable)	±5V, ±10V, 0-10V	
Selected Voltage Range	0-10V	
Offset Voltage	±2.44mV max	
Output Current	±5mA	
Digital I/O		
No. of 8 bit Ports	2 (1 input, 1 output)	
Digital I/O levels	TTL Compatible	
System Throughput		
Multi-Channel Analog Input or Analog Output	0.4000	
DMA Chappele	U-100KHZ	
Number supported	2 (1 Input, 1 Output)	
PC Channels Supported (jumper selectable)	DMA 1, DMA 3	
Input Mode	Start on trigger or start on	

	command, using a linear or circular buffer	
Output Mode	Start on command, using a linear or circular buffer	

РС

Processor	Pentium 166MHz
RAM	32Mbytes
Hard Drive Capacity	1.6Gbytes
Operating System	Windows 95
Control Software	Visual Designer 4.0 by
	Intelligent Instrumentation

Overall System Specifications

Total Light Transmission	88.5% in the visible spectrum
Bandwidth	25Hz
Field of View (largest correction due to	
position sensor active area limitations)	±11 Arcseconds
Range of Motion at Slit	±72.1mm
Resolution	1.3 milliarcseconds
Maximum Slew Rate	326.8 Arcseconds/second
Stellar Range	V=0-9 stellar magnitudes

A2: Operating Instructions

Setup for an Observing Run

- 1. Boot up PC and open the Visual Designer software by clicking Start → Programs → Visual Designer → Visual Designer Run.
- 2. Power up tip/tilt driver (black box next to PC).
- 3. Run program TIPTILTALIGN.DGM in the C:tiptilt directory. Follow the runtime instructions of this program as summarized in 4-26.
- 4. Install laser into polar axis mount.
- 5. Adjust laser until beam passes through the slit and is aligned with the center of the collimator.
- 6. Install link between optical table and polar quartz lamp.
- 7. Install beamsplitter.
- 8. Adjust pick-off mirror #1 until laser hits the center of the tip/tilt mirror.
- 9. Adjust pick-off mirror #2 until laser passes through the slit and hits the center of the collimator. If this cannot be achieved, it may be necessary to re-adjust the home position of the tip/tilt mirror and the position of pick-off mirror #2 simultaneously. The home position of the tip/tilt mirror can be adjusted by entering new values in the x-home and y-home fields of the run time screen. The final values must be recorded and changed in the TIPTILTRUN.DGM program. Do not change these values unless absolutely necessary.
- 10. Very Important!! Insert Neutral density filter on face of laser to avoid overexposing the PMT.
- 11. Plug in BNC and DB-15 cables between PC and PMT signal converter located in the rack next to the slit room doorway.
- 12. Turn on power switch located in the bottom, left hand corner of the Signal converter.
- 13. Turn off lights in slit room.
- 14. Open both diaphragms in PMT baffle tube.
- 15. Close control loop by clicking the switch on the display screen and shut off monitor.
- 16. Adjust beamsplitter until laser is centered on the slit.
- 17. Turn on monitor and open control loop by clicking switch on display back to open loop position.
- 18. Close diaphragms in PMT baffle tube.
- 19. Laser should still be centered on the slit.
- 20. Remove optical table polar quartz link.
- 21. Remove laser from polar axis.

- 22. Re-install optical table polar quartz link.
- 23. Stop TIPTILTALIGN.DGM program.
- 24. Run TIPTILTRUN.DGM.
- 25. Turn off monitor.
- 26. Follow Nightly Setup instructions.

Nightly Setup

- 1. Open diaphragms in PMT Baffle Tube.
- 2. Close loop on first star.
- 3. If star does not go to the slit, adjust beamsplitter mount until the desired position is reached.
- 4. System is now aligned.

Run Time Operations

- 1. When Star is within a couple arcseconds of slit, enable tip/tilt by moving "tip/tilt" switch to "enabled".
- 2. When observation is complete, disable "tip/tilt" switch.
- Should star be lost or tip/tilt seems to fail, disable "tip/tilt switch, complete observation and check status display on the monitor in the slit room for further instructions.
- It may be necessary to slightly re-adjust the beamsplitter position if the star is not centered perfectly on the slit during tip/tilt operation.
- 3. At end of night, just make sure tip/tilt switch is in the "disabled" position and close PMT baffle tube diaphragms.

System Shutdown and Removal Procedures at end of Run

- 1. Shut down Visual Designer program.
- 2. Shut down PC.
- 3. Remove beamsplitter and store properly.

- 4. Close diaphragms in PMT baffle tube.
- 5. Power off tip/tilt driver.
- Power off signal converter.
 Remove optical table polar quartz link and slide optical table out of light path.
- 8. Cover optical table mirrors.
- 9. Unplug PC to signal converter cables and store under PC desk.

A3: Parts List

Part	Vendor	P/N	Total Cost (\$)
Optical Table			
Pick-Off Mirrors	UCO/Lick Optical Shop	N/A	N/A
Tip/Tilt Mirror	Melles Griot	02MPQ011/03	198.00
Mirror Coatings	Denton Vacuum	5 FSS-00	650.00
Base Plates		N/A	N/A
Pick-Off Mirror	Shop	IN/A	256.00
Mounts (2)	Edmund Scientific	J36-482	N/A
Mirror Clips	UCO/Lick Machine	N/A	3,295.00
Tip/Tilt Actuator	Shop	07MCD015	N/A
Tip/Tilt Actuator Mounting Plates	Melles Griot	N/A	
Optical Table Link	UCO/Lick Machine Shop	N/A	N/A
Rubber Stopper		N/A	N/A
Misc Hardware	UCO/Lick Machine		N/A
	Shop		
	N/A		
Beamsplitter and PMT Assy.			
Beamsplitter	OptoSigma	03-2480	170.00
Beamsplitter Mount	Melles Griot	07MHT037	91.00

Mounting Plates	UCO/Lick Machine Shop	N/A	N/A
PMT Baffle Tube			
Iris Diaphragm	Edmund Scientific	J36-623	42.25
48mm Ring Mount (2)	Edmund Scientific	J52-304	115.50
Double Female	Edmund Scientific	J03-630	19.00
Ring	Edmund Scientific	J03-632	115.50
Iris Diaphragm Barrel	Edmund Scientific	J54-630	42.00
15mm Extension (2)	Edmund Scientific	J53-483	33.75
C-to-T Thread	Edmund Scientific	J52-298	19.00
Double Male Thread	Edmund Scientific	J52-295	42.00
Ring	Edmund Scientific	J52-292	63.00
25mm Extension (2)	N/A	N/A	N/A
25mm Holder (2)	Hamamatsu	R5900-01-M4	1,345.00
PMT Housing	Hamamatsu	E7083	335.00
PMT	UCO/Lick	N/A	N/A
PMT Socket	Observatory		
Misc. Hardware			
PMT Signal			
	EMCO High Voltage	L10W	77.00
	Advanced Research	PMT-5R	3,240.00

PMT Preamplifiers	Instruments		
(-)	Corporation	123490	39.95
Preamplifier power	Jameco Electronics	N/A	N/A
supply	N/A		
Misc. Hardware			
Controller			
PC	Hi-Tech USA	N/A	560.47
Visual Designer 4.0	Intelligent Instrumentation	PCI-20909S-1	695.00
Multifunction I/O		PCI-20428W-	445.00
Board	Intelligent	1	60.00
Termination Panel		PCI-20428K-1	
PCI/GPIB Interface	Intelligent Instrumentation	777158-51	570.00
	National Instruments		N/A
PMT Power Supply		N/A	
	UCO/Lick Electronics		4,400.00
Tip/Tilt Driver	Shop	11NCS101/IE	NI/A
Misc. Hardware	Melles Griot		
	NI/A	N/A	
Misc. Hardware	Melles Griot N/A	N/A	

A4: Component Datasheets and Mechanical Drawings

Optical Table Mechanical Drawings

- Optical Table Mounting Surface
- Assembled Optical Table
- Optical Table Assembly Drawing
- Mirror Layout
- Pick-off Mirror Mounts
- Tip/Tilt Mirror Mounting Plate #1
- Tip/Tilt Mirror Mounting Plate #2
- Baseplate #1
- Baseplate #2
- Baseplate #3

Optical Table Datasheets

- Nanomover Actuators
- Nanomover 1 Calibration Graph
- Nanomover 2 Calibration Graph
- Nanomover Gimbal Mount Kit
- Sample FSS-99 Ag Coating Curve

The Nanomover[™] actuator consists of the finest micrometer leadscrew driven through a direct linkage (to minimize backlash) by a two phase, 400 steps/revolution stepper motor. Although somewhat larger than a typical micrometer, Nanomovers are designed as a direct replacement for a manual micrometer. Three versions of Nanomover are available: standard (11 NCM 001), high torque (11 NCM 005), and the spherically tipped (11 NCM 007).

- All actuators have a 25 mm travel.
- Directly replaces manual micrometers with 9.5 mm (.375 in.) shafts.
- # High torque model is perfect for vertical stages.
- Mariable driver allows complete software control.
- M Individually tested actuators come with inspection data sheet.
- IV The second term and term

Typical Nanomover^{ae} performance showing the bidirectional repeatability and accuracy (measured using a Hewlett Packard laser interferometer 5508A) over the range of travel. SPECIFICATIONS: Nanomover™ ACTUATORS

Nanomover[™] Actuators

- Resolution: 10 nm
- Bidirectional Repeatability: ±100 nm

Absolute Accuracy: ±1 µm

Range of Travel: 25 mm

Maximum Velocity: 2.5 mm/sec.

Maximum Acceleration: 1.25 m/sec²

Maximum Load:

11 NCM 001, 11 NCM 007: 10 kg 11 NCM 005: 20 kg

Stepping Carrent: 11 NCM 001, 11 NCM 007: 0.90 A 11 NCM 005: 1.20 A

Holding Current:

11 NCM 001, 11 NCM 007: 0.45 A 11 NCM 005: 0.60 A

Shaft Length:

11 NCM 001, 11 NCM 007: 370 mm 11 NCM 005: 500 mm

Standard Cable Length: 3 m

Dimensions:

- 11 NCM 001: 44×44×160 mm
- 11 NCM 005: 44×44×174 mm 11 NCM 007: 44×44×160 mm
- ____

Weight:

- 11 NCM 001: 370 gm
- 11 NCM 005: 500 gm
- 11 NCM 007: 370 gm

Microscope Controlicity, Spatial Filters & Aperfures

MELLES GRIOT

466

http://www.meilesgriot.com = Your Globai Photonics Partner

Nanomover Calibration Graph

This gimbal type mirror holder is designed so the two orthogonal axes of rotation intersection on the front surface of the mirror. As a result, the optical path length will remain constant with angular changes in mirror position.

* Easily assembled.

outter Tables

MironBeamspil Mounts & Prism 1

5S

Rail & Stab Mountier 3

- Solid steel construction.
- Universal inch/metric base plate provided with both ¼-20 and M6 cap screws.
- # Holds optics up to 50.8 mm (2 in.) in diameter.
- 3 Comes with two Nanomover™ drives.
- Manual resolution of better than 0.5 arc seconds.

G

Nanomover™ Gimbal Mirror Mount Kits

SPECIFICATIONS:

Nanomover^{as} GIMBAL MIRROR MOUNT KITS

Angular Range: 6°

Mirror Diameter: 50.8 mm

Maximum Mirror Thickness: 12 mm

Angular Sensitivity: >0.5 arc seconds

Material: Solid steel with stainless steel motion components

Finish: Flat black paint

Nanomover" Actuators: 2, 11 NCM 001 standard actuators

Nanomover™ Gimbal Mirror Mount Kits

07 MCD 025 assembled kit

472 INELLES GRIOT

http://www.mellesgriot.com = Your Global Photonics Partner

COBT229645 -> SFSU, Physics &

6 90sd

. Ystronomy 100:51 86/8 /11 :Devised

Beamsplitter and PMT Mount Assembly Drawings

- Assembled PMT-B/S Mount
- Beamsplitter and PMT Mount Assembly
- B/S-PMT Mounting Plate #1
- B/S-PMT Mounting Plate #2
- B/S-PMT Mounting Plate #3
- B/S-PMT Mounting Plate #4
- B/S-PMT Mounting Plate #5
- B/S-PMT Mounting Plate #6
- PMT Housing
- PMT Baffle Tube

Beamsplitter and PMT Mount Assembly Datasheets

- Kinematic Beamsplitter Mount
- Beamsplitter
- PMT & Socket

Kinematic mirror/beamsplitter mounts are an ideal low cost solution for two axes tilt. The kinematic design includes hardened surfaces to resist wear and increase stability.

- Precision stainless steel adjustment screws with brass threaded inserts provide exceptionally smooth adjustment.
 Triple-drive option provides translation.
- Counter bored holes.provided for easy "top down" mounting to mounting posts (page 404) and pillars (page 415).

Rall & StableRod" Mounting Systems

07 MHT 02X kinematic mount with two adjusters 07 MHT Mirror Mounts

Kinematic Mirror/Beamsplitter Mounts

07 MHT 03X kinematic mounts with three adjusters

388 **MILLES GRIOT**

http://www.mellesgriot.com = Your Global Photonics Partner

Ordering Details

- Provides a 4% reflected sample of the entire beam
- Highly efficient AR coating on the second surface to eliminate ghosts
- Available in four standard diameters
- Wedged second surface also available for highly demanding applications
- Surfaces finished to $\lambda/10$ flatness

÷

About 4% of a beam incident at 45 degrees is reflected from one surface of these BK7 beam samplers. The faces are parallel to within 5arcsec with a highly effective anti-reflection coating on the second surface. This coating eliminates virtually all ghost image problems. The 4% reflected beam is useful for diagnostic sampling or monitoring of the optical beam.

Specifications & Tolerances

Substrate flatness:	∿ /10	100
Surface quality:	40-20	
Reflectance:	Rav =4% at 45degrees	a 80
Thickness:	±0.2mm	40 ///
Parallelism:	±5arcsec or 1° wedge	
Diameter:	+0, -0.2mm	
Bevel:	0.2mmx45°	
Usable aperture:	>90% diameter	BEAMSAMPLER REFLECTMITY
Material:	BK7, grade A	•
Wedge (optional):	1°	

Beam Samplers

International Pricing: Prices for the United States are listed. For export orders shipped outside the United States simply add 5% to the US price.

http://www.optosigma.com/beamsplit/beamsamplers.html

11/22/99

Diameter, D		Thickness, t	New Lower Price	Delivery	Product	
(inches)	(mm)	(mm)		Denvery	Number	
1.00	25.4	3.0	\$85.00	from stock	038-2450	
1.18	30.0	3.0	\$90.00	from stock	038-2460	
1.97	50.0	5.0	\$160.00	from stock	038-2470	
2.00	50.8	5.0	\$170.00	from stock	038-2480	

For a 1° wedged substrate append -W to product number and add \$20 to the price. Note: Wedged substrates are thicker.

Beamsphitters

- Laser and Broadband Plate Beamsplitters (with multilayer dielectric coatings)
- Non-polarizing Laser Cube Beamsplitters (with special all-dielectric coatings)
- Broadband Cube Beamsplitters (with dielectric coatings)
- New Low-polarizing Cube Beamsplitters (with hybrid coatings)
- Metallized Plate Beamsplitters (with inexpensive metallic coatings)
- Metallized Cube Beamsplitters (with internal metal film coatings)
- Harmonic Separators (for separating YAG laser harmonics)
- Pellicle Beamsplitters (coated for a range of intensity splits)

OptoSigma[®] Ordering & Technical Support (949) 851-5881 Fax (949) 851-5058 E-MAIL: <u>optosigm@ix.netcom.com</u>

HOME | Mirrors | Beamsplitters | Windows | Lenses | Prisms | Polarizers | Filters | Apertures | Minisystem | Linear Drivers Coatings | Optical Bases | Optic Holders | Mirror Mounts | Positioning Stages

http://www.optosigma.com/beamsplit/beamsamplers.html

11/22/99

MULTIANODE PHOTOMULTIPLIER TUBE R5900U-00-M4

FEATURES

- **2 \times 2 multianode**
- Newly developed "metal channel dynode"
- High speed response
- Low cross talk

GENERAL

	Parameter	Description / Value	Unit
Spectral Response)	-300-10-030 2.80-700	nm
Wavelength of Max	cimum Response	420	nm
-	Material	-Biolicolis MULTIALKALI	-
Photocathode	Minimum Effective Area	18 × 18	mm²
Window Material		Borosilicate glass	-
	Structure	Metal channel dynode	-
Uynode	Number of Stages	10	-
Weight		Approx. 26	g
Suitable Socket		E678-32B (option)	-

MAXIMUM RATINGS (Absolute Maximum Values)

 ······································	Parameter	Value	Unit
 Supply Voltage	Between Anode and Cathode	900	Vdc
 Average Anode Currer	it	• 0.1	mA

CHARACTERISTICS (at 25 °C)

	Parameter	Min.	Typ.	Max.	Unit
	Luminous (2856 K)	50	70	-	μA/Im
Cathode Sensitivity	Blue (CS - 5 - 58 filter)	6	8	-	µA/Im-b
Anode Sensitivity	Luminous (2856 K)	25	140	-	A/im
Gain	<u>,</u>	5 × 10 ⁶	2 × 10 ⁴	-	-
Anode Dark Current p	de Dark Current per Channel				54
	(after 30min. storage in darkness)	-	0.5	-	
T D	Anode Pulse Rise Time		1.2	-	ns
lime Hesponse	Transit Time Spread (FWHM)	-	0.32	-	ns
Pulse Linearity per Ct	nannel (±2% deviation)	-	5(30 [@])	-	mA
Cross - talk (9 × 9 mm	1² Aperture)	-	2	4	%
Uniformity Between E	ach Anode	-	1:1.5	1:3	-

NOTE : Anode characteristics are measured with the voltage distribution ration A shown below.

(a) : Measured with the special voltage distribution ratio B (Tapered Bleeder) shown below.

VOLTAGE DISTRIBUTION RATIO AND SUPPLY VOLTAGE

Electrodes	к	0	ly1	Dy	12	DyS	Dy	4	Dy5	Dy	6	Dy7	Dy	8 0	y9	Dy	10	Ρ
Ratio A	1	.5	1.5	5	1.5		1	1	Т	1	. 1		1	1	1	1	1	T
Ratio B (Tapered Bleeder)	1	.5	1.5	5	1.5		1	1		1	1		1	1	2	2	3.8	

Supply Voltage: 800 Vdc, K: Cathode, Dy: Dynode, P: Anode

Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult with our sales office. Information lumianed by HAMANATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subjected to change without notice. No patent right are granted to any of the circuits described herein. @1997 Hamamatsu Photonics K.K.

2 (ns/div.)

Figure 4: Typical T.T.S. Characteristic

TIME (0.5ns/div)

MULTIANODE PHOTOMULTIPLIER TUBE R5900U-00-M4

[ACCESSORIES]

• D Type Socket Assembly E7083

*For a stable operation, all of anodes should be connected to ground potential through load resistors such as 100 k ohm or so, even if they are not used.

A WARNING ~ High Voltage ~

•	PATENT: USA Pat. No. 5410211 PATENT PENDING: JAPAN11, USA1, EUROPE2
	the domulde to the stret statistication
	The product is one readict legitic collarge potential. But we this erutate our multitle and us to a

HAMAMATSU PHOTONICS K.K., Electron Tube Center

314-5. Shimokanzo, Tovooka ken, 438-0193 Japan, Telephone:(81)539/62-5248, Fax:(81)539/62-2205

1)558762-0246, (*84.46) 80, Fmc(1)909-231-1218 8)9(82-575-0, Fmc(49)8153-21 Inphanec(38)1 69 55 71 00, Fm n 69 55 71 10 y, 57 mill Mandy Cases, France, Temperativ Enfinid, Middleaux EM2 7.1A, United Hingdon aux(40)8-703-28-50, Futz(40)8-730-58-06 max (99)2 596 81 733 Putz (99)2 596 81 741

TPMH1128E05 JUN. 1997 (9703)

TACCANI SHE

PMT Signal Converter Drawings

- Signal Converter Diagram

PMT Signal Converter Datasheets

- PMT PreamplifiersPMT Supply Amplifier

ADVANCED RESEARCH INSTRUMENTS CORPORATION

PMT-5R CURRENT TO VOLTAGE AMPLIFIER

SPECIFICATIONS

and the second	
Input Impedance	
Input Signal Range	
input Range Selector	
Output Range	
Output Impedance	
Power Requirements	

Physical Size

Output Connector

9 Pin Sub Miniature D Connector Pin Out

1	N/U
2	Bit 0 LSB
3	+15VDC
4	Bit 1
5	Bit 2 MSB
6	Signal GND
7	Power GND
8	-15VDC
9	Output

FEATURES

- Low Noise
- Wide Sensitivity Range
- Small Size
- Stabilized Power Conditioning
- Low Cost

1kΩ 1pA to 1µA per 1V output Remote via 3 logic lines ±10V 100Ω

±15V, 50mA

2.5 x 5 x 2 inches

BNC and 9 pin sub miniature D

Denen	Range Selection							
(A/V)	10-6	10-7	10	r ^a	10-9	10-10	10-11	
Bit 0	0	1	0	1	0	1	0	
Bit 1	0	0	1	1	. 0	0	-1	
Bit 2	0	0	0	0	1	1	1	

TTL = Positive Logic 1 = +5V 0 = 0V

APPLICATIONS

- Spectroscopy PMT or Photo Diode Preamplifier •
- Low Light Level Detection
- Detection of Currents in the Pico Ampere Range

Bandwidth and noise comparison with similar amplifiers is on the reverse side of this data sheet

February 1995

(303) 449-2288 • FAX (303) 449-9376 2434 30th Street • Boulder, CO 80301, USA

Low Noise, Proportional High Voltage Modules

0 to + or - 300 through 0 to + or - 3,000 VDC @ 1.5 Watts L Series

FEATURES Low Ripple Proven Reliability Extensive Filtering and Shielding Proportional Input/Output Low Cost/High Performance

OPTIONS External Metal Enclosure Two Pin-Patterns

APPLICATIONS Photomultiplier Tubes Mass Spectrometers Avalanche Photo Diodes Microchannel Plates

PHYSICAL CHARACTERISTICS SIZE: 2.5" x 1.5" x 0.85 " WEIGHT: 3 Ounces Approx. PACKAGING: Fully Encapsulated CASE MATERIAL: Glass-filled Epoxy MOUNTING: Four PC Pins Holes (A model only)

ELECTRICAL SPECIFICATIONS INPUT VOLTAGE: 0 to 12 Volts TYPICAL TURN-ON VOLTAGE: <2 Volts OUTPUT VOLTAGE: See Table OUTPUT CURRENT: See Table RIPPLE: See Table REGULATION: 10% (No Load to Full Load) ISOLATION: 3,500 Volts OPERATING TEMP: -10° to +60° C

e-mail sales@emcohighvoltage.com Web site www.emcohighvoltage.com The L Series is a line of small, versatile, component level building blocks that provide up to 3,000 VDC, positive or negative, in a compact PC mount package. The isolated output is directly proportional to the input. Either output may be grounded to generate positive or negative high voltage. Excellent filtering techniques and a low noise sinewave oscillator provide clean, reliable DC to HV DC conversion with low ripple, noise, and EM/RFI. Two pin-out options are available in this series; add an "A" or "B" for your choice (see below). An external metal enclosure is also available, just add an "AB" to the model number (i.e. L30BAB).

MODEL	VOLTAGE	CURRENT	RIPPLE		
L03*	0 to 300	5.00 mA	0.025%		
L05*	0 to 500	3.00 mA	0.025%		
L10*	0 to 1,000	1.50 mA	0.025%		
L12*'	0 to 1,200	1.25 mA	0.025%		
L15*	0 to 1,500	1.00 mA	0.030%		
L20*	0 to 2,000	0.75 mA	0.025%		
L25*	0 to 2,500	0.60 mA	0.200%		
L30*	0 to 3,000	0.50mA	0.200%		

Pin # Function 1 (+) input

NAME CLE

.031 (.76) DM

1.00 (25.40)

--- 2.50 (63.50)

-2 10 (53.34)

165 - 1.20-

.85 (21.59)

.20 (5.08)

PIN-OUT PATTERN "B"

Phone (209) 223-3626 Fax (209) 223-2779 11126 Ridge Road, Sutter Creek CA 95685

4738D

Controller Drawings

- Controller I/O Wiring DiagramPMT Power Supply Schematic

Controller Datasheets

- PC _
- Multifunction I/O Board
- PCI/GPIB Interface
- Nanomover System II Tip/Tilt DriverNano Micropositioning Systems

CH. 0 CH. 2 CH. 2 CH. 3 CH. 5 CH. 5 CH. 5 CH. 5 CH. 5 CH. 7 CH. 7 CH. 6 CH. 7 CH. 7 CH. 7 CH. 7 CH. 7 CH. 7 CH. 1 CH. 1 CH. 1 CH. 3 CH. 5 CH. 3 CH. 5 CH. 3 CH. 5 CH. 3 CH. 5 CH. 5	CH. 0 CH. 1 DUTPUTS (0-10V)	CH. 0 CH. 1 CH. 2 CH. 3 CH. 3 Port #1 CH. 5 CH. 5 CH. 5 CH. 5 CH. 7 CH. 1 CH. 1 CH. 1 CH. 1 CH. 2 CH. 2 CH. 3 CH. 3 CH. 3 CH. 3 CH. 3 CH. 3 CH. 3 CH. 3 CH. 3 CH. 4 CH. 4 CH. 3 CH. 3 CH. 4 CH. 4 CH. 3 CH. 3 CH. 4 CH. 5 CH. 3 CH. 4 CH. 4 CH. 4 CH. 4 CH. 5 CH. 4 CH. 7 CH.	Drawing: I/D Boar Connections By: Mike Eiklenbor
PMT Quadrant 1 PMT Quadrant 2 PMT Quadrant 2 PMT Quadrant 3 PMT Quadrant 4 SiPD Status Switch Input	PMT Power SupplyC	Preamplifier Gain Signal #1 Preamplifier Gain Signal #2 Preamplifier Gain Signal #3	

: (415) 75	3-8848							
stomer		Contact			Ship	To		
IVERSITY OF CA - 5 RIA PLOSS 66 HIGH STREET ITA CRUZ, CA 95064 1: (831) 459-5168 1: (831) 459-5244	ANTA CRUZ (415) 731-3982 XHIK	SF STATE UNIV MIKE EIKLENBORG Tel: (415) 731-3	3982 xPU					
 	_	_	Dua		Sales	Ber	Sched	ula Bata
ASEBURE		AVS	10/19	/98	RAYHON)L.	09/	15/98
63342 les Qrder	88. #		Bafar	ance	Ship	VIA	Page	Printee
SO-107203.	P008577	3			-WILL CALL	PICK UP	1	09/19/98
Item	Descrip	otion	Order	Ship	Price	Disc	UM	Amount
PSSYST	** INTEL PENTIUN SYSTE	M ** 12K	1 1	1 1	64.00		EA EA	64.0
CPU-586-166-INT	S/N : 383916, MFG : P INTEL PENTIUN 166 CPU	5586003695	1	-1	62.00		EA	62.0
NEM-16NB-EDO	\$/N : 444599 4*32-60 ED0 (16MB ED0)	, 72PIN	2	2	16.00		EA	32.0
CASE-MINI-WP NS-CFANP5 VGA-9680-TRT	S/N : 37/374 S/N : 37/614 MINI TOWER CASE W/POWE PENTIUN COOLING FAN TRIDENT 9680 1MB PCI W	r Supply 1/ NPEG	1 1 1	1 1 1	18.00 7.00 20.00		EA Ea Ea	18.00 7.0 20.0
FLPY-1.44-HITS	S/N : 438049, NFG : T MITSUNI 1.44NB FD N. D. 2.16B ULTRA IDE	W571327300 HD	1	1 1	16.00 122.00		EA EA	16.0 122.0
PARTS KB-104-9TRONIX NICE-38 NON-14-0TGIVTEN	S/N : 448848, NFG : W *****PARTS ONLY DO NOT QTRONIX SCORPLUS 104 K 3 BUTTOM SERIAL MOUSE ** DIGIVIEN 14" SVGA M	M3801091027 [INSTALL ***** (/B (AT) HONITOR **	1 1 1 1	1 1 1 1	9.00 5.00 108.00		EA Ea Ea Ea	9.0 5.0 108.0
LAB-SD PF	S/N: 444078, HFG : 3 SYSTEM DIAGNOSTICS PROCESSING FEE	3LX48471305200	2:00 1	2:00 1	40.00 17.47		HR Ea	80.0 17.4

Taxable Tax Exempt	0.00 0.00 560.47
Total Paid Tr Disc Balance	560.47 0.00 0.00 560.47

Thank You

i.

\$

CONDITIONS SPECIFICATION PARAMETER PC/XT/AT and EISA **Bus Compatibility** Analog input Number of Channels PCI-20428W-1,-2 Single-ended/Differential Single-ended 16/8 18 PCI-20428W-3 12 bits (1 part in 4096) Resolution. Voltage Ranges ±5V, ±10V, 0-5V, 0-10V PCI-20428W-1 Gasin = 1 ±0.5V, ±1V, 0-0.5V, 0-1V ±50mV, ±0.1V, 0-50mV, 0-0.1V ±5V, ±10V, 0-5V, 0-10V Gain = 10 Gain = 100 Gain = 1 Gain = 2 PCI-20428W-2 ±2.5V, ±5V, 0-2.5V, 0-5V ±1.25V, ±2.5V, 0-1.25V, 0-5V ±625mV, ±1.25V, 0-625mV, 0-1.25V Gain = 4 Gain = 8 ±5V, ±10V, 0-5V, 0-10V ±35V/±20V PCI-20428W-3 Gain = 1 Power on/ Power off Overvoitage Protection Gain Accuracy PCI-20428W-1, -2 0.02% max 0.07% max Gaain = 1 Gain = 2, 4, 8, 10 Gain = 100 0.25% max 0.02% max PCI-20428W-3 Gain = 1 ±2.44mV max RTI Offset Voltage 500pA 10^eOhms/10pF Blas Current input impedance Common Mode ±10V (DC + Peak AC) min Vcm = Vrange - (Vdiff *Gain)/2 Range Rejection 60Hz, 100ohm imbalance 80dB / 0.04LSB/V min PCI-20428W-1: -2 Gavin ≤ 10 90dB / 1.3LSB/V min Gain = 100 Input grounded at connector; RMS / p-p Noise 0.5 LSB RMS max 0.5 LSB RMS max PCI-20428W-1, -2 PCI-20428W-3 Gain = 1 Gain = 1 12 bits Monotonicity. No missing codes Linearity Error PCI-20428W-1, -2 ±0.024%, ±1 LSB max ±0.024%, ±1 LSB max PC1-20428W-3 Analog Output PCI-20428W-1, -2 Number of Channels 2 12 bits (1 part in 4096) Resolution ±5V, 0-10V, ±10V Voltage Ranges Accuracy ±1LSB Gain 0.024% Linearity Error ±2.44 mV max Offset Vollage 11 bils Monotonicity Ama Output Current Dicital VO 2 (1 input, 1 output) Number of Ports 8 channels (bits) each TTL compatible (Schmitt-trigger) Input Levels input Current, High-Level 20uA 200uA Input Current, Low-Level TTL compatible 400uA Output Levels Source Current Vout = high 8mA Sink Current Vout = iow External Input TTL compatible (Schmitt-trigger) Input Level 20uA 200uA Input Current, High-Level Input Current, Low-Level (Continued on next page)

PCI-20428W BOARD ELECTRICAL SPECIFICATIONS (All specifications are typical at 25°C unless otherwise noted.)

143

Appendix C: Specifications

	CONDITIONS	SPECIFICATION
PARAMETER	CONDITIONS	
Timebase Generators Number of Channels PCI-20428W-1, -2 PCI-20428W-3		2 1 Data Generator
Type Resolution Output Frequency	CTYSUE-DASHO	125ns 122Hz to 4MHz
Prescaled		0.002Hz to 2MHz
Output Levels Source Current Sink Current	Vout ⇒ high Vout ⇒ low	171. competible 15mA 24mA
Counters Number of Channels Clock Speed Input Lavels Input Current, High-Lavel Input Current, Low-Lavel	16 bits	1 SMHz max TTL compatible (Schmitt-Ingger) 20uA 20uA TTL compatible
Output Levels Source Current Sink Current	Vout = high Vout = low	400uA 8mA
tionrupts PCI-20428W-1, -2 Sources	Jumper Selected	One of 3: Anaiog input EOC, Anaiog input RateGenerator,
PCI-20428W-3 Sources	Jumper Selected	Analog Output Rate Generator One of 2; Analog input EOC, Analog input RateGenerator,
PC Levels	Jumper Selected	IRO2, IRO3 and IRO5
Nystem Throughput Multi-Channel Analog Input or Analog Output Under DMA control		100 kHz
MA Channels Number supported PC Channels supported	Jumper Selected	2 (1 input; 1 output) DMA 1, DMA 3
Modes Input Cutput	Genges Indi Sida Union Inicia Very	Start on trigger or Start on Command, using a Lineer or Circular buffer Start on Command, using a Linear or Circular buffer
Course Recuirements		+5V, 1A
awor Available	Connector pins P1-26 and P1-48 combined	+5V, 0.25A fused
Anysical Characteristics Size	Length × Height	9.0" x 4.2" (22.9cm x 10.7cm) 0-70°C

High-Performance GPIB Interface for PCI

PCI-GPIE

Instrument

GPIB In: Control

Overview

The PCI-GPIB is a high-performance Plug and Play IEEE 488 Interface for personal computers and worksations equipped with PCI expansion slots. You can use the PCI-GPIB in PCs running Windows NT/98/95, Power Macintosh computers, Sun Uitra Worksations, and DEC Alpha Worksations.

The National instruments MITE and TNT4882C ASICs make the PCI-GPIB a maximum-performance IEEE 488.2 interface board for the PCI bus. The MITE ASIC, a complete PCI interface, is complant with the PCI Specification 2.1. The hardware is completely software-configurable and compatible with the PLI specification 2.1. The hardware is completely software-configurable and compatible with the PLI specification 2.1. The hardware installation. The TNT4882C chip performs the basic IEEE 488 Taiker. Listener, and Controller functions required by all versions of the IEEE 488 standard, including IEEE 488.2. The PCI-GPIB can sustain data transfer rates up to 1.5 Mbytes/s using the IEEE 488.1 3-wire handshake. The PCI-GPIB also implements the high-speed HS488 GPIB protocol, for benchmarked data transfers up to 7.7 Mbytes/s.

HS488

The PCI-GPIB can use the high-speed GPIB protocol (HS488), HS488, patented by National Instruments, increases the maximum date transfer rate of ANSI/IEEE Standard 488.1-1987 up to protocol that attempts to conduct data transfers with the new higher speed protocol: if all active Listeners are not capable of HS488 transfers, the protocol automatically uses the IEEE 488.1 3-wire handshake protocol. Maximum data transfer rates obtainable using HS488 depend on the host computer architecture and system configuration. The PCI-GPIB has

rate of ANSI/IEEE Standard 488.1-1987 up to Figure 1. PCI-GPB Data Transfer Benchmarks using Windows NT 8 Mbytex/s. HS488 is a superset of the EEE 488.1 (anali data blocks)

698 National Instruments -

Phone: (512) 794-0100 · Fax: (512) 683-8411 · info@natinst.com · www.natinst.com

Figure 2, PCI-GPIB Data Transfer Benchmarks Using Windows NT

been benchmarked at transfer rates up to 7.7 Mbytes/s.

The TNT4882C completely and transparently handles the HS488 protocol without additional circuitry. Because HS488 is a superset of IEEE 488.1, you can mix existing GPIB devices with devices that have high-speed capability without changing your application programs. The TNT4882C can implement high-speed data transfers automatically. Thus, devices that have the TNT4882C chip can transparently communicate using HS488 if the corresponding Taker or Listener can also use HS488.

Transfer Rates

The PCI-GPIB hardware and software provide maximum performance, even when the data block is small. Figures 1 and 2 describe performance under Windows NT. Figures 3 and 4 describe performance under Solaris 2. Figures 1 and 3 Illustrate the data transfer performance of the PCI-GPIB for transfers smaller than 1 kbyte. Figures 2 and 4 extend the plot up to 32 kbyte.

data transfers. Actual obtainable data transfer rates depend on host computer, system configuration, and device capability.

Figure 3. PCI-GPIB Data Transfer Benchmarks Using Sun Solaris 2 (small data blocks

ents 699

Phone: (512) 794-0100 · Fax: (512) 683-8411 · informatins.com · www.natins.com

PCI-GPIB

High-Performance GPIB Interface for PCI ------

Figure 4. PCI-GPIB Data Transfer Benchmarks Using Sun Solaris 2

PCI-GPIB

Hardware

The key functional components of the PCI-GPIB include:

MITE

The PCI interface logic is integrated in the MITE ASIC, ahigh-performance, single-chip PCI interface. All PCI-defined configuration registers and additional control and status registers are implemented in the MITE. The address and control signals of the PCI bus are decoded by the MITE to provide access to the PCI-GPIB registers, the onboard ROM, and the TNT4882C ASIC.

The MITE provides bus mastering using a sophisticated DMA Controller to enhance overall performance during data transfers. The DMA Controller automatically provides several modes of operation, including link chaining, to maximize data transfer performance.

TNT4882C

The TNT4882C ASIC is the first maximum performance single-chip IEEE 488.2 Talker. Listener, and Controller interface with integrated IEEE 488.1-compatible transceivers. The TNT4882C also implements the HS488 mode of operation for high-speed GPIB data transfers. The transfer functions Implement Automatic Handshake Hokdoff on the last byte of a GPIB read, and Automatic END transmission on the last byte of a GPIB write. Because the PCI-GPIB performs these functions in hardware, you save significant CPU time relative to performing the same functions in software.

GPIB Transceivers

Transceivers interface the PCI-GPIB to the IEEE 488 bus, which provide power-up/power-down bus protection (gitch-free). The transceivers are integrated into the TNT4882C circuitry.

NJ-488DDK

The NI-488 Driver Development Kit (DDK) is a comprehensive source code package for developing applications for operating systems other than those supported by a standard NI-488.2 driver. NI-488DDK consists of over 20 board-level functions provided in source code to give you a head start when you must design your own GPI8 driver. The NI-488DDK, a subset of our NI-488 driver, uses the same syntax so that migration of applications between the NI-488DDK and our NI-488 driver software is straightforward.

700

National Instruments Phone: (512) 794-0100 · Fax: (512) 683-8411 · info@natinst.com · www.natinst.com

Phone: (512) 794-0100 · Fax: (512) 683-8411 · info@natinst.com · www.natinst.com

The Nanomover²⁴ Control System II (NCSII) consists of a power supply, a two channel Nanomover control card and two board slots that can be configured for either an IBM-ISA bus or an IEEE-488/RS-232 interface for communication to the host computer. The block diagram of the NCSII is shown in the figure on page 469.

- M Computer control via IBM-ISA bus or IEEE 488/RS 232.
- Additional pairs of actuators can be driven by linking control units together. Only one control unit needs to be configured for computer control.
- Interface for two mechanical limit switches per actuator.
- Optional joystick for simple control of individual actuators without a host computer.
- X Can be used with any two phase stepper motor requiring less than 1.25 amps per phase.

SPECIFICATIONS:

NANOMOVER CONTROLLER SYSTEM II

Nanomovers per chassis: '2

Maximum Current per Phase: 1.25 amps

Input power: 85-240 VAC, 50/60 Hz

Fuse: 2 amps slow blow

- Safety Ratings:
- Designed per U/L, CSA, TUV, and VDE specifications Limit Switches:
- Supported Opto-Interuppter or contact (open during operation)
- **Dimensions (W** × L × H): $215 \times 326 \times 100$ mm

Weight: 4.4 kg

Operating Temperature: 10°C-40°C

Storage Temperature: -40°C-70°C

Nanomover™ Control System II

HOW TO ORDER

The modular nature of the Nanomotion System makes it easy to create optimized solutions for your specific application.

- If the host computer is an IBM compatible machine
- and you wainto operate directly from the ISA bus, then order:
 - a. 11:NCS 101/IBM: for two actuators. b: one 11:NCS 101 for each additional
 - pair of actuators.

If the system is controlled from either an RS-232 serial port, or an IEEE-488 interface, then you order.

- a. 11 NES 101/IEEE for two actuators.
- b. For additional actuators:
- one 11 MB 001 expansion kit and, - one 11 NG 101 for each additional pair of actuators.

Nanomover[™] Control System II

For special controller configurations, please contact Melles Griot

Particle Parket Point Province

468 INELLES GRIOT

http://www.meilesgriot.com Your Global Photonics Partner

Your Global Photonics Partner = http://www.mellesgriot.com =

INELLES GRIOT 469

A NanomoverTM micropositioning system can be constructed to control from 1 to 16 actuators simultaneously. The Nanomover actuators perform to specified levels of precision when operated with Nanomover software and the Nanomover Control System II (NCSII) electronics assembly. The actuators can be controlled through an IBM ISA bus, RS-232 or IEEE-488 interface. Each NCSII chassis can control two actuators. Up to 8 such units can be cascaded for a capacity of 16 actuators. The Nanomover software package is based upon a series of clear menu and self help screens. Only a cursory knowledge of personal computers is necessary to execute relatively complex maneuvers.

RESOLUTION

The ultimate resolution of the Nanomover²⁸ is ± 1 microstep. With 50,000 microsteps per revolution and a 2 threads per mm precision micrometer lead screw, this is a resolution of 10 nanometers

REPEATABILITY

In most applications, the most important feature of a micropositioning device is the ability to return to a position with consistently high accuracy. The Nanomover has an unsurpassed repeatability (both unidirectional and bidirectional) of 100 nanometera. Using the *Park* function, the system can be powered down and left overnight and will still return to the same position within 100 nanometers.

ACCURACY

Good accuracy is hard to achieve but is rarely as important as repeatability, since, in principle, compensation can always be made for systematic deviations. The Nanomover has an absolute accuracy of travel of ± 1 micron, which arises from minute variations in the micrometer thread pitch and inherent inaccuracies present in the stepper motor. For applications requiring even higher accuracy, a software routine to compensate for the errors in an individual lead screw can be supplied by Melles Griot on special request.

Nanomover™ Micropositioning Systems

RANGE

The Nanomover actuators are able to achieve their high degree of resolution, accuracy, and repeatability over a total range of 25 mm. Mirror/Bennspiltfer Mounts & Prism Tables

Posts, Pillars, Bases L Adaptor Plates

(Lian

SYSTEM CONFIGURATION

A Nanomover system can be operated directly from an IBM PC or industry standard IEEE-488 or RS-232 interfaces. Systems with more than two actuators can be created by cascading in one of three ways: via the IBM-ISA bus, the parallel IEEE-488 bus, or the RS 232 serial interface.

The Nanomover software and associated algorithms are vital in achieving specified performance. The IBM-compatible system can be controlled using Nanomover application software and can be programmed using any Windows compatible programming language using Nanomotion dynamically linkable library (DLL). The Nanomotion IEEE 488 system can be controlled using the LabVIEW^{ast} drivers or by programming directly with IEEE 488 commands. The Nanomover RS-232 system can be controlled with ASCII text. These commands can be sent using LabVIEW drivers, standard communications packages, or custom programs.

The Natiomover"

Products in this catalog are in stock and teady for shipment. If you require special positioning or if you prefer multiple axes control in a single chassis, please discuss your needs with your local Melles Gript applications engineer.

Your Global Photonics Partner

http://www.mellesgriot.com

RELES GRIOT 463

A5: Experimental Data

9-25-99 TEST # 1/OPEN LOOP: dn = 2900 TEST # 2/CLOSED LOOP: dn = 5000

Hamilton Spectrograph Observing Log

UT Date: S Windowing Grating: CCD Focus	Fischer/E Sept 25/26 : Rows: 10 493631 :500399	Sutler 5 1999 900	Tape:B97 Chip:#6 Cols: 185 Ht:499811	1	Telescope:3m Mask:0CM Col. offset: 97 slit:640mu "l"		
d*.ccd number	Object Name	12 (Y/N)	Mid-Time(UT)	Exp	. Comments e		
185	HD195019	Y Y	03:23:31	380	2600dn		
186	HD194035	Y	03:32:27	420	3kdn		
187	HD199598	Y	03:42:23	420	3kdn		
188	HD202108	Y	03:53:24	600	2500dn		
189	HD208313	Y	04:05:56	600	2500dn		
190	HR8382	Y	04:16:13	300	2500dn		
191	HD209779	Y	04:28:28	900	1kdn		
192	HD209875	Y	04:46:31	600	2300dn		
193	HD213575	Y	04:57:53	520	3800dn		
194	HD217107	Ŷ	05:07:46	420	4kcm		
195	HD21/8//	Ŷ	05:17:53	600	4 Kom		
196	HR8/49	I V	05:28:19	420			
100	HU21455/	I V	05:56:28	440	4Kall 200dm		
190	UD217619	v	05:50:54	900	3kda		
200	HD218868	v	06.30.43	600	3kdn		
200	HD221830	Ŷ	06.41.21	420	3kdn		
202	HD222033	Ŷ	06:50:18	420	2500dn		
203	HD218133	Ŷ	06:59:56	420	2kdn		
204	GL908	Ŷ	07:15:02	900	1kdn		
205	HR8969	Ÿ	07:26:36	90	5kdn		
206	HD217813	Y	07:33:56	420	4kdn		
207	HIP113084	N	07:51:29	180	5kdn,Kgiant		
208	HIP114449	N	07:58:17	180	5kdn, Kgiant		
209	HIP113622	N	08:04:52	280	4kdn,Kgiant		
210	HIP113686	N	08:12:51	280	6kdn,Kgiant		
211	junk	Y	08:39:29	27	saturated Bstar	•	
212	HR8781	Y	08:41:45	27	10Kdn,Bstar		
213	HR8781	Y	08:57:46	25	10kdn, Bstar		
214	HIP117567	Ŷ	09:01:05	360	Skon, Kglant		
215	HIP11/50/	N	09:08:27	300	SKON, Kglant		
210	HIP11//30	N	09:10:34	300	okun, kgianc		
41/ 010	104903	v	09:40:11	600	Alida		
410 210	HD0202	v	10.00.55	900	2600dn		
220	HD8673	Ŷ	10.15.50	480	5kdn		
221	HR458	Ŷ	10:24:03	120	6kdn		
222	HR458	Ŷ	10:27:31	90	4kdn		
223	HR493	Y	10:33:25	240	4kdn		
224	HR509	Y	10:49:06	180	5kdn		
225	HR509	Y	10:53:51	180	5kdn		
226	HD11226	Y	11:08:59	1200	1kdn		
227	HR582	Y	11:29:36	600	2kdn		
228	HR1729	Y	11:54:46	720	2500dn,tip/tilt!		
229	HR1165	Y	12:17:04	120	1900dn.open loop		
230	HR1165	Y	12:21:07	120	4800dn, closed loop		
231	HR1165	Y	12:31:12	120	4000dn, no t/t		
232	HR1165	Y	12:37:46	120	1200dn, open loop		
233	HR1165	Y	12:41:42	120	2500dn, closed loop)		
234	HR1165	Y	12:45:23	120	1300an, open Loop		
435	HK1165	Y	12:49:09	120	3300dm crosed 100p		
430	HRL105	Y V	12.54:48	120	2300dr alored loop		
177		r	14:30:48	140	Zoudan, Crosed 1000		
237	1001165	v	12.00.52	120	950dn open loop		

Hamilton Spectrograph Observing Log

d*.ccd Object I2 Mid-Time(UT) Exp. Comments 260-265 Wideflat N 03:04:00 5 64:5,bgl3 focus 266 ThAr N 03:05:00 3 64:2 267 IZ Y 03:06:00 5 64:2,bgl3 007T 268 HR7602 Y 03:10:41 70 5400chn t/t.clear skies 269 HR7602 Y 03:3:59 600 3100chn t/t.clear skies 271 HD177153 Y 03:3:59 600 3100chn 272 HD193017 Y 03:3:51 600 1300chn 273 HD194765 Y 04:10:57 900 2kch 276 HD194035 Y 04:10:57 900 2kch 277 HD2137107 Y 05:32:59 1150 3kch 277 HD235171 Y 05:32:59 1150 2500ch 278 HD217107 Y 05:54:14 900 1700chn,t/t 279 HR864 N 06:35:00 60	Observer UT Date: Windowir Grating: CCD Focu	r: Fischer/ : Sept 26/2 ng: Rows: 1 : 493631 us:500398	Butler 7 1999 000	Tape: B97 Chip: #6 Cols: 1851 Ht:499818	Te M Cc sl	elescope:3m Mask:OCM bl. offset: 97 it:640mu "1"	
260-265 Wideflat N 03:04:00 5 64:5,bgl3 focus:a 266 Thar N 03:05:00 3 64:2 267 12 Y 03:06:00 5 64:2,bgl3 DOTT 268 HR7602 Y 03:10:41 70 5400ch t/t,clear skies 269 HR7602 Y 03:24:34 70 10Kdn no ttoptics 271 HD193017 Y 03:53:46 600 1300dn 272 HD194765 Y 04:28:13 600 1700dn 274 HD194765 Y 04:28:13 600 1700dn 275 HD194755 Y 04:28:13 600 1700dn 276 HD195019 Y 05:10:05 1150 3kdn 277 HD23755 Y 05:54:14 900 270 278 HD217107 Y 05:54:14 900 280dn, t/t 280 HR864 N 06:20:00 60 1900dn, t/t 281 HR864 N 06:30:00 60 190	d*.ccd number	Object Name	12 (Y/N)	Mid-Time(UT)	Exp. time	Comments	-
HK456 X HD8673* Y HD10126* Y HD8941 Y HR493 Y HR509 Y HD11226 Y HD1505 Y HD10086* Y HD12661* Y HD12846 Y HD17230* Y HD18144 Y HR937 Y HD25918 Y	number 260-265 266 267 268 269 270 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 HD222033 HD221146 HD221146 HD2211456 HD2211455 HD4915 HD6611 HR458 HD874* HD1226* HD12265 HD12265 HD12661* HD12846 HD12661* HD12846 HD12661* HD1285 HD12661* HD1285 HD12661* HD1285 HD12661* HD1285 HD12661* HD1285 HD12661* HD1285 HD12661* HD1285 HD12661* HD1285 HD12661* HD1285 HD12661* HD1285 HD12661* HD1285 HD12661* HD1285 HD185 HD	Name Wideflat ThAr I2 HR7602 HR7602 HD193017 HD193017 HD194766 HD194765 HD194035 HD195019 HD213575 HD217107 HR864 HR864 HR864 HR864 HR864 HR8729 HD221830 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	(Y/N) N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	03:04:00 03:05:00 03:10:41 03:17:19 03:24:34 03:33:59 03:53:46 04:10:57 04:28:13 04:47:55 05:10:05 05:32:59 05:54:14 06:00:00 06:25:00 06:25:00 06:30:00 06:40:00 07:33:09 07:45:03 08:00:37	time 5 3 5 70 70 600 600 600 1150 900 60 60 60 60 60 60 60 60 60 60 60 60 6	64:5, bg13 focus:a 64:2 64:2, bg13 ,	skies

139	HR1165	Y	13:04:08	120	1600, closed loop
40	12	Y	13:20:00	5 .	64:2,bg13
41	ThAr	Y	13:40:00	3	64:2
42-257	wideflat	N	13>50:00	5	64:5, bg13

•

;

Date: Tue, 28 Sep 1999 12:16:25 -0700 (PDT) From: Debra Fischer <fischer@serpens.berkeley.EdU> To: paul@dtm.ciw.edu, gmarcy@etoile.Berkeley.EDU, meiklenb@stars.sfsu.edu, jones@ucolick.org, tony@ucolick.org, vogt@ucolick.org Cc: fischer@serpens.berkeley.EdU Subject: Re: Lick Errors

Hello, '

I thought I'd supplement Mike's report on t/t with my observations.

I checked the spectra of HR7602 with and without t/t (series of observations to test). The velocities are identical and the Svalues from the IR triplet are identical for all 3 observations (2 with and one without t/t). These observations were taken at the beginning of our last night when the seeing was just under 2" and we lost a factor of 2 in counts with t/t.

I also checked hd221830 which is a new standard star with no apparent velocity variation. This star was observed at the end of the night in nearly hopeless conditions. Between bad seeing and telescope shake, we were down by a factor of 4 in counts when I started the exposure. Mike rolled in t/t and had everything aligned in about 15 minutes and I started another exposure. In these bad conditions, we gained back a factor of 2, making it reasonable to try to work. The velocity and S values all look consistent with the previous observations of this star.

HR8729 (good ol' 51 Peg) was also observed in extremely bad conditions. Again, all indications are that t/t increased s/n to a workable level and the spectra produce the expected velocity and S IR value.

So, t/t is basically working. The optics need to be recoated to reduce losses and then we need to again evaluate the throughput performance of t/t. We also need a faster/easier ways to align the star on the slit - Mike has suggested motorizing the beam splitter so we could adjust it remotely with a joystick. That would be ideal and I think that should be an immediate/early upgrade. Finally, once the optics are resurfaced, we need to spend some time evaluating the performance as a function of magnitude. Will we have to adjust the gain? What is the faintest star that the PMT can sense? I think we'll need a different sensing mechanism to make this an observatory instrument that will look at fainter than about V=9.

Best. Debra